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CADMIUM EFFECTS ON HIGHER PLANTS

ABSTRACT: Cadmium (Cd) is a heavy metal widely distributed in the biosphere.
Environmental pollution with Cd is widespread throughout the world. At higher concentra-
tions, it is very toxic to living organisms. Plants absorb Cd from the soil solution rather
casily, and it enters the food chain mostly through them. The availability of Cd for plants
depends primarily on the chemical properties of the soil. During the uptake of Cd, interac-
tion with ions of other elements may occur. Plant species differ in the intensity of absorption
and thus accumulation of Cd, which is absorbed in the form of ions or chelates. Cadmium
mostly accumulates in the roots and may then be transported by xylem and phloem. Toxic
concentrations of Cd can cause a variety of unfavorable changes in the anatomical and
morphological features of plants, affect physiological and biochemical processes, their min-
eral composition and reduce growth. Cadmium may inhibit germination by hindering water
uptake and mobilization of seed reserves. The effect of Cd on photosynthesis was studied
in the most detail. Higher concentrations of Cd adversely affect the synthesis of chloroplast
pigments, photosynthetic electron transport and the Calvin cycle more than other processes.
Some substances can be used to mitigate the phytotoxic effect of Cd, such as silicon, boron
and biochar etc. Cadmium-hyperaccumulating plant species possess specific mechanisms
by which they can mitigate the toxicity of higher Cd concentrations.

KEYWORDS: accumulation; heavy metal; Cadmium (Cd); distribution; growth; plants;
photosynthesis; seed germination; toxicity

INTRODUCTION

Cadmium is a soft silver-white metal, belonging to the group of heavy metals
(HM). Together with zinc and mercury, it is included in the II B group of the
periodic table. Cadmium was discovered by Sreomeyer in 1817. The atomic
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number of Cd is 48, atomic weight is 112.41 g/mol. It is found in nature but in
the form of salts. The most famous salt is CdSO, and it is also found in the
form of CdS, CdCl, and Cd(NOs),. In the air, it quickly turns into CdO. Heavy
metals are among the biggest environmental pollutants (Karahan et al., 2020).
They can pollute soil, air, water and plants. They are very toxic to all living
organisms, microorganisms, plants, animals and humans. Cadmium can cause
toxic effects in living organisms even at low concentrations. It is one of the most
toxic heavy metals due to its high solubility in water and non-degradability. It
can enter the human body primarily through ingestion and partly through the
respiratory tract. It concentrates in bones, kidneys and liver, causing numerous
serious diseases (Altio and Tritscher, 2004). Therefore, significant attention is
paid to this element both from a health and ecological point of view. According
to the World Health Organization (WHO), the weekly tolerable exposure to Cd
is 0.007 mg/kg of body mass (WHO, 2000). Terrestrial plants mostly absorb
Cd from the soil and the concentration of Cd in the Earth’s crust is on average
0.15 to 0.20 mg/kg. The average concentration of Cd in the surface layer of soil,
based on a large amount of data in different soil types and countries, ranges from
0.06 to 1.1 ppm in dry matter (Kabata-Pendias and Pendias, 2000). Numerous
human activities lead to environmental pollution with Cd: mining and metal
refining, municipal sewage sludge, animal manure, compost, mineral fertilizers,
pesticides, atmospheric fall-out, coal fly ash, cement factories, natural mobi-
lization of Cd by weathering of rocks and volcanic activity, etc. (Bogdanovi¢
et al., 1997; Kabbata-Pendias and Pandias, 2000; Rizwan et al., 2017). Cadmium
is a harmful non-essential element for plants, humans and animals. Owing to
its good solubility in water and high mobility in the soil, plants absorb Cd easily
and more intensively compared to some other HMs. It can affect numerous
physiological, biochemical and metabolic processes of plants. Owing to its
chemical similarity with some other divalent cations (like Ca®" and Mg*"), Cd
can substitute them in the active part of the molecule of some proteins and thus
cause a disturbance in their function. The phytotoxicity of Cd is based, among
other things, on its ability to bind to histidyl, thiol and carboxyl groups of
enzymes and structural proteins, thus preventing their original physiological
and biochemical action (Huybrechts et al., 2019). For the above and other rea-
sons, excessive accumulation of Cd in plants can cause numerous morpho-
logical, physiological and biochemical disorders, the ultimate effect of which
is reduced production of organic matter or even death. Cadmium-stress ad-
versely affects photosynthesis and reduces chlorophyll content (Zhou et al.,
2024), negatively affects seed germination (Chanpiwat and Numprasanthai,
2024), causes oxidative stress, production of superoxide free radicals resulting
in DNA damage and lipid peroxidation of the cell membrane system (Hossain
et al., 2012; Haider et al., 2021) and affects leaf structure and root anatomy
(Kovacevi¢ et al., 1999; Maksimovi¢ et al., 2007). Considering the numerous
environmental pollutants containing Cd and its toxicity at higher concentra-
tions for living organisms, it is understandable that there is a great interest in
this element.
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Uptake, transfer and accumulation of cadmium

Plants can absorb Cd through the roots and leaves, stems and seeds. The
sources of Cd can be soil, air and water habitats. The most significant is its
absorption from the soil, where it is found in different forms, primarily in
soluble and exchangeable form. Bioavailability of Cd depends on numerous
chemical and physical properties of the soil, pH value, capacity of cation ex-
change, organic matter content, presence of ions of other elements, temperature,
humidity and soil texture (Wei et al., 2023; Huang et al., 2021). The pH value
of the soil is of particular importance for the bioavailability of Cd, since it
decreases significantly in an alkaline environment. Acidic soils enhance Cd
solubility, whereas liming immobilizes Cd. Soil organic matter binds Cd but
can also form soluble complexes that increase mobility. Microbial activity
modifies Cd bioavailability through siderophore production, root exudates, and
mycorrhizal associations. Biochar and phosphate amendments have shown
promise in reducing bioavailable Cd pools (Guan et al., 2025).

Cadmium enters roots via multiple transporter families: ZIP (ZRT/IRT-like
proteins), NRAMPs, HMAs (heavy metal ATPases), and Ca®* channels. The
high-affinity Fe’" transporter, IRT1, is a major Cd entry route in Arabidopsis
(Tao et al., 2022). Once inside the root symplast, Cd is either bound by phyto-
chelatins or exported into xylem vessels by HMA2/HMAA4. Vacuolar seques-
tration is mediated by ABC transporters and HMA3. Transpiration stream
largely drives Cd accumulation in leaves, whereas phloem mobility is rela-
tively restricted, though grains of rice and wheat still accumulate Cd to toxic
levels (Yu et al., 2024).

Due to the chemical similarity and charge characteristics between Cd and
Ca, Fe(Il), Zn and Mn, there is competition for their uptake and translocation
in plants (McLaughlin et al., 2021). Cadmium toxicity affects N metabolism;
the activity of some enzymes of N metabolism decreases, while the content of
nitrates in plants increases (Kastori and Petrovi¢, 1995). Optimal N supply
decreases the stress induced by Cd in young sunflower (Pankovi¢ et al., 2000).
The Si alleviates uptake and accumulation of Cd in peanut and pea (Shi et al.,
2010, Rahman et al., 2017). Reduction in rhizotoxicity and absorption of Cd
by soybean and wheat roots were seen upon the application of Ca and K (Yang
and Juang, 2015). Individual plant species and genotypes can differ signifi-
cantly in intensity of uptake and accumulation of Cd (Petrovi¢ et al., 2003; Ai
et al., 2022). Cadmium is absorbed by plants in the form of Cd** ions or in the
form of chelating compounds. In the soil solution, Cd*" ions reach the root
surface by mass flow or diffusion. On the root surface, Cd adsorption occurs
from the surface of rhizodermal cells through exchange with H' ions, after
which Cd reaches the cortex through the apoplast (Sasaki et al., 2012). There
is an opinion that the transport of Cd ions is carried out by the same transmem-
brane carriers that participate in the uptake of some other cations. After enter-
ing the root hairs, Cd is transported through symplast and apoplast pathways
to the xylem (Shaari et al., 2024). In long-distance transport, xylem plays a key
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role. The driving forces of xylem transport are transpiration and root pressure.
Phloem transport plays an important role in the redistribution of Cd in aerial
organs (Tanaka et al., 2007). In general, it can be said that Cd is well mobile
in plants, where transporter proteins play an important role (Hao et al., 2022;
Zhang et al., 2024). Cadmium can also enter cells through the plasma mem-
brane via Ca channels (Perfus-Barbeoch et al., 2002). Most of the absorbed Cd
is retained in the roots, which can be considered as one of the protective mech-
anisms of above-ground organs against the toxic effects of Cd. In the case of
beans, from the total Cd taken up, only 2% is transported to the aerial part. In
the root, it is predominantly found in the apoplast or vacuole (Ouariti et al., 1997).
In some plants, the cell wall plays a pivotal role in the accumulation of Cd
(Peng et al., 2017). The presence of Cd in human and animal food is unaccep-
table; therefore, special attention is paid to the distribution of Cd in consum-
able parts of plants. The intensity of Cd accumulation in plants primarily de-
pends on its concentration in the nutrient medium and it rises with its presence.
(Logan et al., 1997; Dias et al., 2012). Cadmium also affects the accumulation
of some micro- and macronutrients in plants. According to Dias et al. (2012),
in the roots of young Lactuca sativa plants, Mn uptake was significantly de-
creased at 10 and 50 uM Cd, while in the leaves, Fe uptake significantly de-
creased. Plant species differ significantly in Cd accumulation. In soil enriched
with 10 ppm Cd by sewage sludge, the concentration of Cd in the above-ground
part among the 19 examined species, primarily cultivated, was the lowest in
rice and the highest in turnip, 162.0 pg/g of dry matter. Significant differ-
ences between wheat genotypes in their response to different Cd concentrations
were found in vitro (Kondi¢-Spika et al., 2005). Wheat cultivars originating
from different parts of the world and then grown in the same ecological condi-
tions differed only slightly in the accumulation of Cd in the grain. The con-
centration of Cd in the grain in the eight tested wheat genotypes was much
higher in humid years (0.0423 mg/kg of dry weight) and was significantly
lower in dry years (0.020 mg/kg) from the allowed maximum concentration
(0.5 mg/kg) (0.3 mg/kg) (Maksimovic et al., 2016). The World Health Organi-
zation (WHO) does not provide one single maximum permissible concentration
(MPC) for cadmium in all plants (Commission Regulation (EU) 2023/915 of
25 April 2023). Worls Health Organization (WHO) and Food and Agriculture
Organization (FAO) guideline suggests a maximum level of 0.2 mg/kg for leafy
vegetables. However, other sources indicate different maximums, and some
national limits are even higher for specific vegetables. For root vegetables,
other organizations have set a maximum level of 0.3 mg/kg; for medicinal
plants WHO have set a limit of 10 ppm (10 mg/kg); for rice, the allowable
limit is often set at 0.2 or 0.4 mg/kg. There are plant species that are character-
ized by higher accumulation of Cd, so-called hyperaccumulators, such as ber-
muda grass, vetiver grass, bulrush, and turnip. They are characterized by a
higher bioconcentration and translocation factor for Cd (Shanying et al., 2017).
Owing to that, some of them can be used for phytoremediation of Cd-contam-
inated soils.
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Effects of cadmium on seed germination

Seed germination is one of the most important events in the life cycle of
plants. It can be influenced by numerous exogenous and endogenous factors,
including the presence of Cd (Carvalho et al., 2023; Jabri et al., 2024; Chanpi-
wat and Numprasanthal, 2024). The first step towards germination is absorp-
tion of water, since it is essential for activation of hydrolytic enzymes and for
hydrolysis of organic compounds stored in the endosperm. This initiates met-
abolic processes, including respiration and various anabolic pathways necessary
for the growth and development of the embryo. Higher concentrations of Cd
can weaken water absorption and thus limit the availability of water for the
development of embryos and seedlings (Kuriakose and Prasad, 2008). The
absorption of water depends on the structure of the seed coat as well as on the
presence of osmotically active substances in the seed. Their presence, how-
ever, depends on the activity of hydrolytic enzymes, which is affected by Cd.
Kalai et al. (2016) reported a reduction of alpha-amylase activity in germinat-
ing barley seed influenced by Cd stress, resulting in a decrease in starch release
from cotyledons. A decrease in the activity of hydrolytic enzymes such as
alpha-amylase, acid phosphatase and proteases in Sorghum bicolor led to a
decrease in the mobilization of the seed nutrient reserves (Kuriakose and Pras-
ad, 2008). Cadmium can affect the production of reactive oxygen species (ROS)
and tangle the antioxidant system, which can affect numerous processes in
plants, including seed germination (Senevirante et al., 2019). Elevated ROS
(O;7, H,0O,, HO¢®) causes lipid peroxidation (e.g., increased MDA), protein
oxidation and DNA damage. Cadmium does not directly generate reactive
oxygen species (ROS), but it interferes with electron transport chains in chlo-
roplasts and mitochondria, leading to ROS overproduction. Reactive Oxygen
Species (ROS) such as H,O, and O, — cause lipid peroxidation, protein oxida-
tion, and DNA damage. Plants respond with enzymatic antioxidants (SOD,
CAT, APX, GR) and non-enzymatic antioxidants (ascorbate, glutathione, fla-
vonoids). The balance between ROS production and scavenging capacity deter-
mines tolerance (Seregin & Kozhenkov, 2023).

According to Han et al. (2023), the antioxidant enzymes of wheat seeds and
seedlings decreased under Cd pollution. Cadmium also affects phytohormones,
which play a significant role in the processes of decomposition of organic mat-
ter accumulated in the endosperm during seed germination (Huybrechts et al.,
2019). Seeds intensively absorb Cd dissolved in water, especially at higher
concentrations. Higher concentrations of Cd adversely affect germination,
seedling vigor and increase the percentage of atypical seedlings (Kastori et al.,
2019). Based on a large number of literature data, Senevirante et al. (2019), and
Carvalho et al. (2023) state that Cd does not always have a negative effect on
germination and seedling vigor, but may have a neutral or even positive effect
depending on the dose of Cd, properties of the medium, plant species and
genotype, the state of plant and organ development.
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Effect of cadmium on photosynthesis

Photosynthesis is of vital importance for higher plants, since in this process,
organic matter is synthesized from CO, and water, using solar energy. There-
fore, numerous researchers have recently studied the influence of Cd on photo-
synthesis (Chu et al., 2018; Song et al., 2019; Chen et al., 2022; Zhou et al., 2024).
According to Chen et al. (2022), application of 20 umol/L CdCl, to lettuce
significantly reduced the chlorophyll (Chl) content in lettuce leaves. It was
observed that important enzymes in the synthesis of chlorophyll, such as POR,
DVR and HemB are less active under Cd-induced stress, which leads to a
decrease in the content of Chl a, b and their total amount. At the same time,
the degradation of carotenoids was stimulated and thus their content decreased.
The ratio of Chl and carotenoids decreased, while the ratio of Chl a to Chl b
increased. In Oenanthe javanica, 100 mg Cd/L reduced the content of Chl a
and b, while the proportion of carotenoids was very little affected. Chlorophyll
b showed greater sensitivity to Cd than Chl a. (Zhou et al., 2024). A significant
decrease in Chl a and b content was also found in purslane plants when 100
mg Cd/L was applied (Takabayashi et al., 2011). Cadmium is thought to in-
hibit the phototransformation of protochlorophyllide to chlorophyll, as well as
to promote the enzymatic degradation of chlorophyll by activating chlorophyl-
lase. The possibility of replacing Mg in the chlorophyll molecule with ions of
divalent metals Cd, Hg, Zn, Ni, Pb was published by Kiipper et al. (1996). Heavy
metal porphyrins have been known in vitro for a long time. The test results
showed that Mg in the chlorophyll molecule was replaced by heavy metals in
in vivo conditions, which made it impossible for photosynthesis to take place.
It has been shown that there is an almost regular relationship between the
toxicity of heavy metals and the tendency of their ions to bind in the center of
the chlorophyll molecule. The replacement of Mg with heavy metals makes it
impossible for the changed chlorophyll molecules to absorb light energy and
thus the transfer of electrons is disabled, resulting in the interruption of pho-
tosynthesis. Light intensity has a great influence on Mg substitution reactions.
In addition to the mentioned elements, Mg in the chlorophyll molecule can also
be replaced by some rare earth elements, like La or Ce.

Higher concentrations of Cd affect not only the amount of chlorophyll but
also the overall activity of the photosynthetic apparatus and hence, the decrease in
the amount of chlorophyll under Cd stress results in a decrease in photosynthesis
(Song et al., 2019). According to Dias et al. (2012), 10 and 50 uM Cd in lettuce
leads to a significant reduction in the photochemical efficiency of PSII and a
reduction of the net CO, assimilation rate. Cadmium can reduce or interrupt the
photosynthetic electron flow (Voigt and Nagel, 2002; Song et al., 2019). Zhou et
al. (2024) also report the influence of Cd stress on photosynthetic electron trans-
port by influencing the amount of active PSII and PSI. Pankovi¢ et al. (2000)
mention that Cd stress affected the ribulose-1,5-bisphosphate regeneration
capacity of the Calvin cycle more than other processes. According to Chen et al.
(2022), Cd stress inhibited the synthesis of photosynthesis-related proteins or sub-
units and directly affected the protective mechanism of the photosynthetic system.
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Growth responses to cadmium toxicity

In conditions of Cd stress, the reduction of plant growth and mass is close-
ly related to its negative impact on photosynthesis. Even low Cd concentration
(1 uM) induced reduction of lettuce growth (Dias et al., 2012). Cadmium ex-
posure leads to significant alterations in plant anatomy. Root cortical cells
exhibit wall thickening and increased suberin deposition, limiting Cd transport.
In leaves, chloroplasts become swollen with disrupted grana. Mitochondria
display condensed matrices and broken cristae. Scanning electron microscopy
shows alterations in stomatal density and aperture control. Such changes com-
promise overall metabolic efficiency (Mushtaq et al., 2025).

Cadmium affected cell division and differentiation. Higher Cd concentra-
tions decreased root dry mass and length while increasing root diameter in
tomato (Gratao et al., 2009). In Cd-treated maize seedlings, the fresh root bio-
mass, total root length and primary seminal root length were significantly lower
than in the control and had thicker cortex and thicker parenchyma cells (Maksi-
movi¢ et al., 2007; Rahman et al., 2017). Cadmium changes leaf structure in
young wheat plants and reduces leaf dry mass, mesophyll thickness, the num-
ber and size of vascular bundles and vessel diameter. Thinner chlorenchyma
after Cd treatment is possibly due to its negative effect on cell division and
elongation (Kovacevi¢ et al., 1999). The increases in Cd concentration from
0.5 to 5.0 uM CdCl, reduced plant height, leaf area, and fresh mass of leaves
in young sunflower plants (Pankovi¢ et al., 2000). In lettuce exposed to 1 and
20 uM Cd, there was a reduction of 16% and 46% of plant dry weight (Dias et al.,
2012). Heavy metals and microplastics are almost always found in the soil. Han
et al. (2023) have found that the co-existence of Cd and polypropylene-micro-
plastics (PP-MPs) at 50 and 100 um has a synergistic and antagonistic effect with
Cd, depending on the size of PP-MPs. Cadmium accumulation in reproductive
tissues leads to pollen sterility, reduced fertilization success, and impaired seed
filling. In cereals such as rice and wheat, Cd disrupts assimilate partitioning,
resulting in lower grain weight and nutritional quality. High Cd content in
grains exceeds food safety thresholds (0.2 mg/kg in rice, WHO/FAO standard),
making Cd contamination a global food security issue (Zhou et al., 2022).

According to Monteiro et al. (2012), Cd toxicity induced cyto- and geno-
toxicity and led to decreased antioxidant capacity in lettuce. The concentration
of Cd >1 uM leads to an increase in the presence of hydrogen peroxide, the
consequence of which is an increase in the oxidation of proteins and lipids.
Silicon can reduce the impact of stress caused by some environmental factors
(Lazi¢ et al., 2020). Detoxification of Cd relies heavily on chelation and com-
partmentalization. Phytochelatins (PCs), short peptides derived from glu-
tathione, bind Cd and facilitate transport into vacuoles. Metallothioneins (MTs)
also contribute to binding. Ali et al. (2015) stated that application of salicylic
acid can alleviate the toxicity of Cd in oilseed rape. Rahman et al. (2017) dem-
onstrated that exogenous silica can compensate Cd toxicity in field peas. Boron
can also alleviate its toxicity by promoting Cd chelation on cell wall compo-
nents of root cells (Wu et al., 2020). Transport across the tonoplast is mediated
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by HMA3, ABC-type transporters, and CAX transporters. Vacuolar sequestra-
tion prevents Cd from interfering with cytosolic processes and contributes to
tolerance in hyperaccumulators such as Thlaspi caerulescens (Yu et al., 2024).
According to Amirahmadi et al. (2020), biochar application reduces soil Cd
bioavailability and encourages oak seedling growth. Cadmium hyperaccumu-
lator plants have developed a complex mechanism to control the toxic effects
of Cd. They form organic complexes with Cd and can thus protect key physi-
ological processes from its harmful impact (He et al., 2017).

CONCLUSION

Soil pollution with heavy metals, including Cd, is a worldwide significant
environmental problem. Plants primarily accumulate Cd from the soil, through
which it enters the food chain and thus endangers the health of humans and
animals. Higher plants can absorb Cd through roots and aerial organs. It is
taken up in the form of ions or chelates, where it can interact with ions of
other elements. Cadmium is highly mobile in plants in both xylem and phloem.
Most of it accumulates in the roots and, to a much lesser extent, in the repro-
ductive organs. Higher concentrations of Cd in plants cause visible, morpho-
logical (chlorosis, necrosis, etc.) and invisible physiological and biochemical
changes. Phytotoxic concentrations of Cd can already affect the initial phases
of plant life and seed germination by inhibiting water uptake and mobilization
of seed reserves. The influence of Cd on photosynthesis was studied in the
most detail. Cadmium reduces the activity of enzymes important for the syn-
thesis of chlorophyll a and b and promotes their breakdown by activating
chlorophyllase, as a result of which their content decreases. Cadmium can
replace Mg in the chlorophyll molecule and thus enable photosynthesis to take
place. Furthermore, Cd stress leads to a significant reduction in the photo-
chemical efficiency of FSII and assimilation of CO, in the Calvin. Cadmium
stress leads to a decreased antioxidant capacity in plants. Reduction of photo-
synthetic productivity and phytohormone activity results in reduction of growth
of shoots and roots, reduction of leaf surface and numerous anatomical changes.
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PE3UME: Kaamujym (Cd) ce yOpaja y Temke meTase. 3araleme 3eMIbUIITA Te-
IIKMM METaJINMa, a THME ¥ KaJMHjyMOM, ITpe/ICTaBJba 3aHa4YajaH MpooJIeM IINPOM CBe-
Ta jep je npu BehuM KOHLEHTpallijaMa BeoMa TOKCUYaH 3a )KUBE OpraHu3Me. Y JlaHall
MCXpaHe KaaAMHjyM Hajsehum nenom nocnesa npeko 6nibaka. Buine Gusbke Mory na
ycBajajy KaAMUjyM PEKo KOpeHa 1 Haa3eMHuM opranuma. Hajsehnm nesnom ra ycsa-
jajy mpeKko KopeHa, U3 3¢MJBUIITHOT PacTBOPA, 300T uera onrepeheme 3eMIbHIITa Kaa-
MHjyMOM IpecTaBjba BeluK npodiem. Kon BehuHe Onsbaka KaIMHUjyM ce HaKyILJba y
KOpEHY, a y Mab0j MepH y HaJ3eMHHUM, a TIOCEOHO Y penpoayKTUBHIM oprannma. Kanu-
MHJyM 32 OnIbKe HHje TOKCHYaH [PH HIXKUM KOHLEHTpauujama. MehyTum, Buiue KoH-
LICHTpalyje KaaMujyMa Koz Oribaka U3a3uBajy aHaTOMCKe, MOP(OIIOLIKe, PU3HOTIOIIKE
1 Groxemujcke npomene. GUTOTOKCHYHE KOHLEHTPALM]e KaJAMHUjyMa MOTY Jia yTU4y
Beh y moueTHoj (ha3m )xuBoTa OMIbaKa: Ha KiHjamke ceMeHa HHXUOUpajyhu ycBajame
BOJIE ¥ MOOMJIN3ALIM]y PE3EPBHUX MaTepuja CeMEHa, IITO Ce HEITOBOJBHO OApaxkaBa Ha
pacT noHuka. HajaerasbHuje je npoyyaBaH yTULa] KaqMUjyMa Ha (POTOCHUHTESY, ILTO
Jje pa3yMJBHBO aKO Ce NMa y BUY 3Hauaj OBOT IIpoIieca y o0pa3oBamy OpraHcKe MaTepH-
Je Buinx Orsbaka. tberos yTuuaj Ha GoToCHHTE3y BeOMa je KomIuiekcat. Behe konuen-
TpaLKje KaAMHUjyMa CMakbyjy Caipxkaj XJI0poduia a U 6 1 BHUXOB OHOC, JOK Cy KapoTe-
HOM/IM Mambe MOJUIOKHH JIejCTBY Kaamujyma. Kaamujym naxubdupa dororpancdopma-
K]y IPOTOXJIOPOGUINIA y XJIOPODHUIL, @ yTHYE ¥ HA BETOBY Pasrpajiiby aKTHBALHjOM
xnopodunaze. O Moxe fa 3aMmeHn Maruesujym (Mg) y Mosiekyity xaopoduiia u fa u
Ha Taj HAYMH OHeMoryhu onBujarbe GoTocuHTese. Kaamujym u3asusa cTpec KOju 3Ha-
yajHo cMamyje hoToxemujcke eduracnoctu FSII, yruue Ha poTOCHHTETHUKH TpaHC-
MOPT €JIEKTPOHA, HAa aKTUBHOCT eH3uMa KanBruHOBOT Lukiyca U TUME Ha yrpaawy CO,
y Opraicka jenumema. CMameme POTOCHHTE3e M aKTUBHOCTH (PUTOXOPMOHA Ma 3a
MOCJIEANILY CMalbeHHU pacT Ousbaka, OpojHe aHaTOMCKe M MOP(oJIOLIKe TPOMEHE, XJI0-
po3y, Hekpo3y u ap. Ctora je BeomMa Ba)kKHA 3aIITUTA XUBOTHE CPEAMHE OJf IITETHOT
JIeJIoBama KaJaMujyma.

KJbYUHE PEUN: akymynamnuja; Temkn Metar; kaamujym (Cd); auctpudynnja;
pacT; Ousbke; POTOCHHTE3A; KJIHjahe CEMEHA; TOKCHYHOCT
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